Statistical methods for parameter fine-tuning of metaheuristics

thumbnail

Tutor / Supervisor

Juan Pérez, Angel Alejandro

Student

Calvet Liñán, Laura

Document type

Master thesis

Date

2014

rights

Open AccessOpen Access

Publisher

Universitat de Barcelona



Abstract

Metaheuristics are an approximate method widely used to solve many hard optimization problems in a multitude of fields. They depend on a variable number of parameters. Despite the fact that they are usually capable of finding good solutions within a reasonable time, the difficulty in selecting appropriate values for their parameters causes a loss of efficiency, as it normally requires much time, skills and experience. This master degree s thesis provides a survey of the main approaches developed in the last decade to tackle the problem of choosing a good set of parameter values, called the Parameter Setting Problem, and compares them from a methodological point of view focusing on the statistical procedures used so far by the scientific community. This analysis is accompanied by a proposal of a general methodology. The results of applying it to fine-tuning the parameters of a hybrid algorithm, which combines Biased Randomization with the Iterated Local Search metaheuristic, for solving the Multi-depot Vehicle Routing Problem are also reported. The computational experiment shows promising results and the need / suitability of further investigations based on a wider range of statistical learning techniques. Along these same lines, different suggestions for future work are described. In addition, this work highlights the importance of statistics in operations research giving a real-world example.
user

Participating teacher

Files